
SIGRAD 2016, pp. 1–8
M. Hayashi (Editors)

Concepts of Hybrid Data Rendering

T. Gustafsson, W. Engelke, R. Englund and I. Hotz

Linköping University, Department of Science and Technology, Media and Information Technology.

Abstract
We present a concept for interactive rendering of multiple data sets of varying type, including geometry and
volumetric data, in one scene with correct transparency. Typical visualization applications involve multiple data
fields from various sources. A thorough understanding of such data often requires combined rendering of theses
fields. The choice of the visualization concepts, and thus the rendering techniques, depends on the context and
type of the individual fields. Efficiently combining different techniques in one scene, however, is not always a
straightforward task. We tackle this problem by using an A-buffer based approach to gather color and transparency
information from different sources, combine them and generate the final output image. Thereby we put special
emphasis on efficiency and low memory consumption to allow a smooth exploration of the data. Therefore, we
compare different A-buffer implementations with respect to memory consumption and memory access pattern.
Additionally we introduce an early-fragment-discarding heuristic using inter-frame information to speed up the
rendering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In this paper we discuss methods to combine different ren-
dering concepts for volumes, meshes and texture based tech-
niques for the purpose of interactive hybrid visualizations.

Visualization plays an important role for the analysis of
data in many scientific applications. Thereby, typical real
world scenarios involve multiple data sets often of different
type. This requires efficient solutions for combined render-
ing of hybrid data in one image. Since different data types
often require fundamentally different rendering techniques
this can be a challenging task; e.g. the joint visualization of
geometry represented as multiple transparent surfaces and
volumes using direct volume rendering.

When combining multiple transparent surfaces it is im-
portant to blend them in the right order to be perceived cor-
rectly. This means the fragments need to be composited in
the correct order, either front-to-back or back-to-front. In di-
rect volume rendering, when using volume ray-casting, vol-
ume samples are composited in a similar way, in order from
the entry point to the exit point. Since volume ray-casting is
working on a range of samples at once it is impossible to use
the default compositing methods that exists on the GPU to
combine volume ray-casting with transparent surfaces.

Order Independent Transparency refers to a collection of
techniques to render multiple, possibly complex, transpar-
ent surfaces independent of the order of draw calls. Most
of the Order Independent Transparency techniques focus on
surface representations rather than combining surfaces and
volumetric data.

In this paper we will discuss concepts extending existing
Order Independent Transparency techniques for interactive
hybrid data rendering. In detail we consider

• Mesh rendering for geometry visualization
• Volume Ray-casting for direct volume visualization
• 3D line integral convolution (3D-LIC) for directional

data.

Our approach is based on A-buffer techniques and we
demonstrate the effectiveness of this on datasets from differ-
ent fields including a heart dataset containing both anatomi-
cal context in the form of surface boundaries and the blood
flow. As well as a protein dataset containing various surface
representations and the electron charge density volume. With
this we present the following contributions:

• A concept for efficient hybrid data rendering based on A-
Buffer techniques.

submitted to SIGRAD (2016)



2 T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering

• An improvement over existing techniques by using inter-
frame coherence for a fragment discard heuristic.

The remainder of this paper is organized as follows. After
related work in Section 2 we introduce some important back-
ground knowledge in Section 3. We present the methods of
our approach in Section 4. In Section 5 we analyze timing
and memory consumption and present our results. Finally
we conclude our work with a discussion in Section 6 and
name possible future developments.

2. Related Work

In the following we shortly review the most relevant liter-
ature for our work. This is at first order independent trans-
parency, basic volume rendering and three dimensional tex-
ture rendering.

ORDER INDEPENDENT TRANSPARENCY. The correct
rendering of (semi) transparent scenes is an intensively stud-
ied field in computer graphics. Early techniques were based
on sorting the individual draw calls. Opaque objects are
drawn first, followed by (semi) transparent objects. With in-
creasing geometric complexity and an increasing amount of
objects in typical computer graphics scenes, this technique
lead to high computational costs for the CPU-based sorting
of scene elements in a back to front manner. NVidia [Eve01]
presented an approach, which uses consecutive peeling of
the depth buffer to resolve correct transparency, independent
from the order of draw calls. The individual slices of the
depth buffer reveal hidden geometry in a consecutive man-
ner. All slices are blended back-to-front in a second render
path. This method was later improved by Bavoil and My-
ers [BM08] where a front-to-back and back-to-front peeling
is performed at the same time.

Another approach to render correct transparency, inde-
pendent of the order of draw calls, is sorting on fragment
level. For this, all objects of a scene are rendered and
their color and depth values are stored in a buffer. This A-
Buffer approach can be implemented with layered 2D tex-
tures or per-fragment linked lists [BK11]. Maule et al. and
Zhang [MCTB12, Zha14] have addressed different perfor-
mance and memory related aspects of this approach. One
challenge with the A-buffer based methods, is the optimiza-
tion of the local memory for each pixels’ fragment list. For
example GPU shaders does not allow the usage of arrays
with dynamic size. An early work by Sintorn et al. targeted
this issue by a rapid pre-computation of the required array
size [SEA08]. Later Lindholm et al. [LFS∗14] introduced
a different approach. Their method is called per-pixel array
optimization and is based on using multiple shaders which
uses different array sizes, and sending pixels of certain depth
complexities to a shader using a similar array size. Lindholm
also proposes another improvement called per-pixel depth-
peeling, which removes the problem of having to allocate too
large array sizes completely. Schollmeyer et al. presented the

integration of an A-Buffer approach with a deferred render-
ing pipeline [SBF15].

Another method, more similar to the traditional depth-
buffer, was presented by Bavoil et al. [BPL∗07]. Their k-
buffer is also capable of handling order independent trans-
parency. It stores the front-most fragment for each pixel, but
it can only store up to k fragments, sorted and blended in a
single pass. One advantage of this, compared to the A-buffer
is that it does not have to define a maximum scene depth.

DIRECT VOLUME RENDERING. Volume raycasting is the
most intuitive and popular method for direct rendering of
volumetric data, with scalar quantities. Early work in this
area was undertaken by Cabral et al. [CCF94] where they
used 3D texture slicing. More recent approaches render
proxy geometry to generate entry and exit point textures
on the GPU and perform ray casting afterwards. These
approaches have been improved by Krüger and Wester-
man [KW03] by integrating early ray termination and empty
space skipping. Röttger et al. [RGW∗03] targeted pre-
integration technique, volume clipping and advanced light-
ing. A flexible framework for standard and non-standard
techniques, was presented by Stegmaier et al. [SSKE05].
Their work was easy to extend and able to reproduce
translucency, transparent isosurfaces, refraction and reflec-
tion. Volume rendering for general polyhedral cells was
presented by Muigg et al. [MHDG11] The Visualization
Handbook [KM05] as well as Real-Time Volume Graph-
ics [EHK∗06] provide an overview of direct volume render-
ing techniques.

LINE INTEGRAL CONVOLUTION. Dense texture based
techniques are one major group in flow visualization. One
representative of this category is line integral convolution,
which was first presented by Cabral et al. [CL93]. Stalling
and Hege [SH95] presented a fast and resolution indepen-
dent approach. Later the idea was applied to 3D vector
fields by Interrante [Int97] as well as Rezk-Salama et al.
[RSHTE99] and surfaces by van Wijk et al. [vW03]. A com-
prehensive overview can be found in the work of Laramee
et al. [LHD∗04]. Whereas, Falk and Weiskopf [FW08] tar-
geted 3D line integral convolution in conjunction with direct
volume rendering. Additionally they incorporated adaptive
noise generation. Therefore the method is independent of the
input data size.

3. Background

In this section we will briefly describe the visualization
methods we focused on, for the combination with our hy-
brid data rendering approach.

MESH RENDERING. A typical approach for mesh render-
ing is to transform the meshes vertices with the current mod-
elview matrix, perform primitive assembly, clipping, per-
spective division, depth testing and finally put each frag-
ment to the output buffer. OpenGL performs these stages in

submitted to SIGRAD (2016)



T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering 3

(a) (b) (c)

Figure 1: Our hybrid rendering approach combines rendering of mesh and volume data into one single visualization. The
shaded fragments of the mesh rendering (a) are stored with their depth information in an A-Buffer. During ray traversal the
volume renderer (b) stores its results in the same A-Buffer. The result (c) is a combined visualization of both source with correct
transparency.

its configurable and customizable pipeline approach. In our
current implementation we rely on triangulated meshes. We
suggest [SSKLK13] for further reference.

VOLUME RAYCASTING. For direct volume rendering
method, a common method is volume ray-casting. Here a
three-pass approach can be used. In the first pass a proxy ge-
ometry, namely the bounding box of the volume, is rendered.
During this pass, back-face culling is enabled and a color
buffer is bound as render target. Its content will later serve
as entry-point texture. For the second pass, front-face culling
is enabled and therefore the exit-point texture is generated.
Both passes will interpolate the given texture coordinates at
each vertex of the bounding box in an efficient way. After-
wards the third and last pass uses the entry and exit-point
textures to define the rays, used for sampling the volume.
We suggest The Visualization Handbook [KM05] and Real-
Time Volume Graphics [EHK∗06] for further reference.

3D LINE INTEGRAL CONVOLUTION. Line Integral Con-
volution (LIC) is a well known texture based method for vi-
sualization of steady vector fields. The basic idea is to per-
form a convolution of a white noise input texture. At each
location in the field a one-dimensional kernel is defined by
integrating a flow tangential line a fixed distance in both, for-
ward and backward direction. The noise texture is sampled
along this line and the corresponding values are summed and
normalized. Afterwards, the resulting value is placed at the
actual location in the output image. Furthermore, the local
one-dimensional nature of this algorithm makes it ideal for
a parallel and efficient implementation. Today, LIC calcu-
lations are commonly performed on graphics hardware and
can easily achieve interactive frame rates even for larger in-
put data.

For 3D vector fields the same approach can be used. In-

stead of a two-dimensional noise texture, a noise volume
is utilized to perform the convolution at each voxel. After-
wards, the result is visualized by direct volume rendering.
Unless 2D LIC, 3D LIC is more sensitive to the type of
noise used for the convolution. A sparsely populated and
blurred 3D texture as input, has proven to result in less clut-
tered results. Figure 2 shows an analytically defined vector
field visualized by streamlines as well as 3D LIC. We sug-
gest [CL93] and [FW08] for further reference.

(a) (b)

Figure 2: Visualizations of an analytically defined vector
field using (a) streamlines and (b) 3D LIC.

NUMERICAL INTEGRATION METHODS. For the calcula-
tion of integral lines typical methods are Euler and Runge-
Kutta integration. Both methods iteratively compute the in-
tegral lines from a given start location. Thereby, Euler in-
tegration samples the field only at the beginning of the in-
terval (e.g., current location) to compute the next point and
thus suffers from low accuracy. In contrast the fourth-order
Runge-Kutta scheme (RK4) samples the field at four differ-
ent locations within the current interval and uses a linear
combination of these samples to compute the next point. The

submitted to SIGRAD (2016)



4 T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering

Screen texture

p points to its 
last fragment

fragmentfragmentfragmentend pointer

Indexed RGBA+depth 
container

Global counter
(next fragment available)

Figure 3: A screen texture is used to store pointers to the
last stored fragment, which in turn points to its previous
fragment. By using these pointers, we are able to access the
RGBA+depth values of each fragment.

RK4 integration is a good trade of between computational
cost and accuracy.

4. Hybrid Data Rendering

In this paper we propose a concept to combine different ren-
dering techniques, this is visualizing volumes using direct
volume rendering together with (semi) transparent geome-
try. For a combination of mesh rendering and volume ray-
casting it is important to align the individual coordinate sys-
tems. Doing this ensures that the resulting depth values cor-
respond to each other.

In this section we describe the proposed hybrid data ren-
dering method. This includes the data types that can be visu-
alized and the visualization options.

A-BUFFER RENDERING METHODS. Order independent
rendering of (semi) transparent scenes is commonly done in
two rendering passes. The first pass renders the scene and
populates the A-Buffer with fragments, the second pass sorts
these fragments and performs back to front compositing to
produce the final pixel colors. In order for our A-Buffer to
support varying color and transparency of fragments and be
able to correctly compose these, we need to be able to store
the color, its transparency and the depth value. This results
in five different values, in total, which have to be stored per
fragment (r, g, b, a, depth). Therefore, we are using two
buffers, one for (r, g, b, a) and one for depth values.

An A-Buffer can be implemented with different underly-
ing technologies. The most intuitive approach is storing each
rendered fragment in a layered 2D-texture. All layers, for
one output fragment, are later blended in the order of their
depth value. A major drawback of this approach is that it
suffers from a lot of unused memory if the depth complexity
varies over the scene.

Another approach uses a per-pixel linked lists to store the
incoming fragments. This approach requires a single buffer
to store all fragments, with an accompanying buffer that
stores pointers between these elements. Thereby the first
fragment of each coordinate points to the zero index, all
other fragments point back to its previous fragment. Thus

Screen texture

p points to its last page

end pointer

Global counter
(next page available)

page page

The pixel's last page 
may contain empy fields

Figure 4: Here the screen texture points to a page of frag-
ments. In this illustration the page size is three fragments,
but it can essentially be any number. By storing the frag-
ments in pages, we get better performance on the GPU.

a lot of memory can be saved compared to using the texture-
based method, since the buffer can be defined to be just
as large as necessary. This is advantageous especially for
scenes with high variation of depth complexity. Figure 3
shows the concept of using linked lists of fragments with
an A-Buffer. In general this method is slower than a texture-
based method, due to bad cache coherency between the frag-
ments, since each fragment is possibly stored in different
memory pages.

To overcome this disadvantage we propose to use frag-
ment pages, instead of individual unrelated fragments, in the
linked list. A pointer in the list will then point to a page of
fragments, instead of a single fragment. This method min-
imizes the problem of bad cache coherency when using a
linked list of fragments. Figure 4 shows how the pages are
stored in the linked list.

All described methods require memory to be pre-allocated
on the GPU. For the texture-based method this size is deter-
mined by a user-configurable parameter adjusting the size
of the texture stack, i.e. number of depth layers per frag-
ment. For the link-list methods the amount of memory to
pre-allocate is defined globally and not per pixel, the size of
this buffer is automatically adjusted during run-time. Upon
loading a scene a relatively small buffer is allocated, if this
buffer is fully filled up. While rendering we abort the current
frame, enlarge the buffer and restart the rendering.

PERFORMANCE ANALYSIS. Out of the described meth-
ods we expect the texture method to be faster than the
Linked-List method due to less cache misses. A problem
with the texture-based method is that it must predefine a
maximum depth complexity that it will be able to handle.
The linked lists method can theoretically handle any depth-
complexity until the pre-allocated memory is exhausted. The
advantage with using this method though is that we will have
the option to allocate less memory and still get correct re-
sults, compared to a texture-based approach, where the size
of the stack must be at least as big as the highest depth
complexity. According to Crassin [Cra10], the advantage in
memory utilization of the method using linked lists can be
huge when objects of high depth-complexity are rendered
in parts of the full screen space, while other parts are either

submitted to SIGRAD (2016)



T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering 5

empty or very simple. In typical scenes, exactly this is the
case and is reflected by the values measured by [Cra10]. He
found that a linked list based implementation consumes, de-
pending on the screen resolution, only 6−10% of the mem-
ory a texture-based approach does.

DIRECT VOLUME RENDERING WITH A-BUFFERS. Vol-
ume ray-casting is the most common approach for direct
volume rendering, and by recognizing the similarity of the
compositing part of our A-Buffer rendering and volume ray-
casting we realize that, to combine these two methods is
similar to the merging steps of merge sort and we only
need to modify our composite step. After we have retrieved
and sorted the fragments stored in the A-Buffer for current
pixel, we query the entry and exit point and perform the ray-
casting. For each step in the ray-casting loop we compare the
depth of current volume sample with the foremost fragment
in the sorted A-Buffer list and pick whichever is nearest.
This is done until either both the ray-casting and A-Buffer
fragment list is empty or we reach full opacity.

EARLY FRAGMENT DISCARDING. In many scenes, there
is a lot of fragments that are stored unnecessarily. When the
alpha values of the closest fragments are high enough to
completely occlude the fragments behind them, we would
optimally want to have a way of knowing beforehand which
fragments those would be, since that would allow us to skip
the occluded fragments completely in the first pass.

To address this issue, we present a method we call early
fragment discarding. This technique relies on an additional
buffer and a general assumption of frame coherency. The ad-
ditional buffer is used to store the depth values of previous
frame’s fragments where full opacity was reached. With this
we do a depth-test for each fragment and discard that frag-
ment if its depth is higher than the depth value of the pre-
vious frame. This happens during the first rendering pass,
while populating the A-Buffer.

By storing fewer fragments we see performance increases
for multiple reasons. The first reason is that discarded frag-
ments does not need to be written to the buffer, which is one
of the bottle necks of the first pass, second reason is, hav-
ing fewer fragments, sorting them in the second pass will
become faster.

This approach can introduce information loss during in-
teraction. For example, when rotating the camera the depth
values close to edges might change rapidly resulting in dis-
carding fragments that could have a strong contribution to
the final pixel-color. By only discarding fragments while the
user is interacting with the scene (rotation, translation etc.)
and perform a full rendering once the user stops interacting,
a good compromise between performance and correctness
can be achieved. A way to decrease information loss can be
achieved by introducing an allowed margin of depth values.
Since the fragment depth is stored in the range of 0-1, we can
add a percentag margin to the threshold, which will allow us

to keep some of the fragments that could potentially be in-
correctly discarded on interaction of the scene. A good value
for this margin was found at 5%, in which most of the cor-
rect fragments were kept, with still significantly improved
performance, compared to not using the method at all.

3D LINE INTEGRAL CONVOLUTION. A 3D-LIC method
was implemented using Euler integration, as well as fourth-
order Runge-Kutta integration with a fixed step size. For ev-
ery voxel in a vector field volume, a generated noise volume
is traversed with a certain amount of steps, in forward- and
backward directions. For every step traversed the noise tex-
ture is sampled. After sampling all points along one integral
line, their mean value is used as the final color of the current
voxel.

RANDOM NOISE-VOLUME GENERATION. Unlike 2D
LIC, with 3D LICs the output quality is highly dependent
on the chosen strategy for random noise generation. In this
case, using a 3D volume as the noise input, different types of
noise were tested. These were white noise, where each voxel
get a random value between zero and one, and a sparse noise
generation based on the Halton sequence. As it can be ob-
served in Figure 5, the sparse noise based on the Halton se-
quence is the most promising one, when comparing the final
output images with respect to visual clutter and structure.

(a) (b)

Figure 5: Two LIC visualizations of the same vector field,
with different noise inputs. White noise (a) give a dense but
more cluttered result. Sparse Noise based on the Halton se-
quence (b) results in clearer, more distinct structures.

5. Results and Evaluation

The methods described in Section 4 have been implemented
in Inviwo, an open-source framework for interactive visual-
ization [SSK∗15]. In this section we present the results, from
applying the described methods on two datasets from differ-
ent domains.

The first dataset is a flow dataset of a human heart, ac-
quired using 4D Flow MRI and consists of a time-sequence
of volumes. It is given over one cardiac cycle, in addition to
the flow field we have a time-sequences of the anatomy as
regular MRI and segmented masks for each of the various

submitted to SIGRAD (2016)



6 T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering

(a) (b) (c) (d) (e)

Figure 6: Visualization of the protein human carbonic anhydrase II. (a) and (b) show two different mesh representations, in
(a) ribbons are used to visualize the backbone or the protein and in (b) a licorice visualization is used to visualize the bounds
between atoms. Figure (c) visualizes the electron charge density inside the protein using volume ray-casting. By using our
hybrid renderer we can combine these three views into the final image, seen in (d). The depth complexity of the A-Buffer of this
frame is visualized in (e).

chambers, major arteries and veins of the heart [BPE∗15].
In figure 7 we can see various representations of this dataset,
created with our software. In Figure 7(a) we have extracted
an iso-surface from to represent the boundary of the heart,
here rendered with full opacity. To visualize the blood flow
we have generated a 3D LIC volume as described in Sec-
tion 4, the result of this is visible in Figure 7(b). When hav-
ing only the 3D LIC rendering it can sometimes be tricky
to depict the anatomical location of the flow in the heart, in
such cases rendering the flow together with the surface can
be useful. With our hybrid renderer we can easily combine
this two representations, in Figure 7(c) we can see how the
3D LIC is rendered using volume ray-casting together with
the surface mesh. Before compositing, the surface mesh is
rendered into the A-Buffer with a 40% opacity.

The second dataset is the human carbonic anhydrase
II [PDB] protein. It consists of the protein structures as
meshes and volumetric data describing the electron charge
density at each location. In Figure 6(b) we see a Licorice
representation of the bonds between atoms in the protein,
this representation is available from the data as a polygon
mesh of cylinders. In Figure 6(a) a second mesh representa-
tion is available which represents the backbone of the protein
using ribbons. Overlapping with the meshes we have a elec-
tron charge density volume describing positive and negative
charge, this volume is rendered using regular volume ray-
casting in Figure 6(c), red areas represents positive charges
and blue areas represent negative charges. Using our hy-
brid renderer we can combine these three representations.
First the Licorice mesh is rendered into the A-buffer at full
opacity together with the ribbons at 60% opacity. The sorted
a-buffer is then combined with the volume ray-casting re-
sulting in a final rendering as can been seen in 6(d). In Fig-
ure 6(e) the depth complexity of the scene is displayed. This
is done by coloring the pixel based on the number of frag-
ments for that pixel where black means zero fragments and
red means max number of fragments.

In scenes with very large depth-complexity, the A-buffer
may sometimes run out of memory. In such situations we
discard additional fragments. Since discarding fragments,
during the population of the A-Buffer, leads to insufficient
information during the final composite step, we show black
pixels, instead of incorrect information at that location.

(a) (b) (c)

Figure 7: Heart dataset: (a) shows the extracted surface as
geometry, whereas (b) shows the result of the 3D LIC. In (c)
both visualizations are combined. Note that the opacity of
the geometry was reduced to reveal the inner LIC visualiza-
tion.

PERFORMANCE. The A-Buffer methods presented in this
paper are based on performing two rendering passes. The
first writes the fragments to a fragment container (which may
be different depending on the method used), then it renders
them to screen in the second pass. When measuring the per-
formance of the A-Buffer methods, it is therefore relevant to
measure the performance of these passes separately.

All performance measurements were done in a setup sim-
ilar to the heart rendering described above. Instead of us-
ing 3D LIC the flow is visualized using path lines rendered

submitted to SIGRAD (2016)



T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering 7

as tubes and the anatomical surface rendered using volume
ray-casting. All performance metrics presented in the paper
have been measured on a computer using a Nvidia GTX 580
GPU, with 4 GB of graphics memory, and an Intel Xeon
W3550 CPU, with four cores and clock speed of 3.07 GHz.

In order to get a good time measure of each pass, times-
tamps were taken before the first pass, after the first pass, and
after the second pass. By calculating the differences between
these we could measure the time taken for each pass. When
running the tests using different options meant to speed up
one of the rendering passes, it was discovered that both time
differences changed drastically, in contrast to just one, which
would have been expected.

In the second pass, insertion sort is used to sort all the
fragments for each screen pixel, which has a time complexity
of O(N2). Since most pixels do not have a depth-complexity
of higher than 10 fragments for most scenes an O(N2) sort-
ing algorithm is sufficient. Not much, if any, performance
could be gained by changing the sorting method into an
O(N logN) such as quick or merge sort. Disabling depth-
sorting completely improves overall performance by around
20-30%, but will of course give incorrect results.

In Table 1 we present the rendering times for the two A-
Buffer methods with two parameters (e.g., max depth and
page size). The main difference between the methods is, how
the GPU memory is used. The texture-based approach uses
layered 2D-textures, during the population of the A-Buffer.
In contrast the linked list approach uses pointers in GPU
memory, for each fragment location (see Figure 3, 4). Sec-
tion 4 describes both methods in detail. The image size for
these tests was 800x800 pixels. Note that the early-fragment-
discarding method was not used here.

The early-fragment-discarding method was tested with
scenes of varying depth complexity, object transparency and
resolutions. The results are shown in Table 2.

Here it is clear that the method is able to improve per-
formance of the A-Buffer significantly, under the right cir-
cumstances. An unexpected result was obtained for low res-
olutions, where removing the margin yielded worse perfor-
mance compared to using a 5% margin.

Table 1: Performance of the two A-Buffer methods. The av-
erage depth-complexity was ∼ 12 fragments for the scene
these tests were made on.

Method Max Depth Page Size Avg. FPS
Texture Based 64 - ∼22
Texture Based 128 - ∼18
Linked Lists 64 8 ∼18
Linked Lists 128 8 ∼16
Linked Lists 128 2 ∼15
Linked Lists 128 1 ∼14

Table 2: Performance of the Early Fragment Discarding
method using different parameters. All tests were performed
on the same dataset. The average depth-complexity of the
scenes were ∼ 10 fragments for the 400x400 px scene and
∼ 7 for the 800x800 px scene.

Dimensions Alpha EFD Margin Avg. FPS
400x400 0.2 no - ∼30
400x400 0.2 yes 5% ∼35
400x400 1.0 yes 0% ∼44
400x400 1.0 yes 5% ∼46
400x400 1.0 yes 10% ∼43
800x800 0.2 no - ∼24
800x800 0.2 yes 5% ∼32
800x800 1.0 yes 0% ∼41
800x800 1.0 yes 5% ∼40
800x800 1.0 yes 10% ∼39

Using 10% margin in general removed the visual arti-
facts. In our examples a margin of around 5% was a good
compromise resulting in few artifacts and generally high im-
age quality. Removing the margin generally increases per-
formance, however it has a large impact on the image qual-
ity, which is considered as too big. Since the performance
gain is small that using it margins is justifiable.

6. Conclusion and Future Work

CONCLUSION. With this work we presented a hybrid ren-
dering technique, which is capable of combining different
visualization methods into a single output image in an ef-
ficient way. To achieve a high-quality and interactive ren-
dering we extended and combined state of the art methods
like the A-Buffer and GPU based volume ray-casting. To im-
prove the performance of the rendering we introduced sev-
eral improvements to one of the underlying building blocks,
the A-Buffer. The method has been carefully analyzed with
respect to memory consumption and performance. Its effi-
ciency has been demonstrated on two different datasets.

FUTURE WORK. As discussed in Section 5 for future
work, we see room for improvement with the sorting algo-
rithm in the second pass of the A-Buffer. Besides that, the
optimal resolution of the noise input, in comparison to the
output resolution could be studied in more detail, in order to
improve performance while still keeping a good visual rep-
resentation. Our current implementation is restricted to one
volume data set. For the future we plan to support for multi-
ple volumes, which should be a straightforward extension.

7. Acknowledgments

This work was supported in part by the Swedish e-Science
Research Center (SeRC) and the Excellence Center at
Linköping and Lund in Information Technology (ELLIIT).
The described concepts have been realized using the Inviwo
visualization framework (www.inviwo.org).

submitted to SIGRAD (2016)



8 T. Gustafsson & W. Engelke & R. Englund & I. Hotz / Concepts of Hybrid Data Rendering

References
[BK11] BARTA P., KOVÁCS B.: Order Independent Transparency

with Per-Pixel Linked Lists. The 15th Central European Seminar
on Computer Graphics (2011). 2

[BM08] BAVOIL L., MYERS K.: Order independent transparency
with dual depth peeling. NVIDIA OpenGL SDK (2008), 1–12. 2

[BPE∗15] BUSTAMANTE M., PETERSSON S., ERIKSSON J.,
ALEHAGEN U., DYVERFELDT P., CARLHÃĎLL C., EBBERS
T.: Atlas-based analysis of 4d flow cmr: Automated vessel seg-
mentation and flow quantification. Journal of Cardiovascular
Magnetic Resonance (2015). 6

[BPL∗07] BAVOIL L., P.CALLAHAN S., LEFOHNM A.,
AO L. D. COMBA J., SILVA C. T.: Multi-fragment effects on
the gpu using the k-buffer. I3D ’07 Proceedings of the 2007
symposium on Interactive 3D graphics and games. Pages 97-104
(2007). 2

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated volume
rendering and tomographic reconstruction using texture mapping
hardware. Proceedings of the 1994 Symposium on Volume Visu-
alization (1994), 91–98. 2

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields us-
ing line integral convolution. In Proceedings of the 20th annual
conference on Computer graphics and interactive techniques -
SIGGRAPH ’93 (1993), ACM, ACM Press, pp. 263–270. 2, 3

[Cra10] CRASSIN C.: Opengl 4.0+ abuffer v2.0: Linked lists of
fragment pages, 2010. 4, 5

[EHK∗06] ENGEL K., HADWIGER M., KNISS J., REZK-
SALAMA C., WEISKOPF D.: Real-Time Volume Graphics. A
K Peters, Ltd., Wellesley, Massachusetts, 2006. 2, 3

[Eve01] EVERITT C.: Interactive order-independent trans-
parency. NVIDIA OpenGL Applications Engineering 2, 6 (2001),
7. 2

[FW08] FALK M., WEISKOPF D.: Output-sensitive 3D line inte-
gral convolution. IEEE Transactions on Visualization and Com-
puter Graphics 14, 4 (2008), 820–834. 2, 3

[Int97] INTERRANTE V.: Illustrating surface shape in volume data
via principal direction-driven 3d line integral convolution. SIG-
GRAPH ’97 Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques. Pages 109-116 (1997).
2

[KM05] KAUFMAN A., MUELLER K.: Overview of volume ren-
dering. Visualization Handbook d (2005), 127–174. 2, 3

[KW03] KRUGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. Proceedings IEEE Vi-
sualization (2003), 287–292. 2

[LFS∗14] LINDHOLM S., FALK M., SUNDÉN E., BOCK A.,
YNNERMAN A., ROPINSKI T.: Hybrid data visualization based
on depth complexity histogram analysis. Computer Graphics Fo-
rum (2014). 2

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F. H., WEISKOPF D.: The State of the Art in
Flow Visualization: Dense and Texture-Based Techniques. Com-
puter Graphics Forum 23, 2 (jun 2004), 203–221. 2

[MCTB12] MAULE M., COMBA J. L. D., TORCHELSEN R.,
BASTOS R.: Memory-Efficient Order-Independent Transparency
with Dynamic Fragment Buffer. 2012 25th SIBGRAPI Confer-
ence on Graphics, Patterns and Images (aug 2012), 134–141. 2

[MHDG11] MUIGG P., HADWIGER M., DOLEISCH H.,
GRÖLLER E.: Interactive volume visualization of general poly-
hedral grids. IEEE transactions on visualization and computer
graphics 17, 12 (dec 2011), 2115–24. 2

[PDB] PDB: Structure of native and apo carbonic anhydrase ii
and structure of some of its anion-ligand complexes. 6

[RGW∗03] ROETTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSER W.: Smart Hardware-Accelerated Volume Render-
ing. Symposium on Visualization (VISSYM ’03) (2003), 231–238.
2

[RSHTE99] REZK-SALAMA C., HASTREITER P., TEITZEL C.,
ERTL T.: Interactive exploration of volume line integral convo-
lution based on 3D-texture mapping. Proceedings Visualization
’99 (Cat. No.99CB37067) Li, section 6 (1999), 233–528. 2

[SBF15] SCHOLLMEYER A., BABANIN A., FROEHLICH B.:
Order-independent transparency for programmable deferred
shading pipelines. In Computer Graphics Forum (2015), vol. 34,
Wiley Online Library, pp. 67–76. 2

[SEA08] SINTORN E., EISEMANN E., ASSARSSON U.: Sample
based visibility for soft shadows using alias-free shadow maps.
Computer Graphics Forum 27, 4 (2008), 1285–1292. 2

[SH95] STALLING D., HEGE H.-C.: Fast and resolution indepen-
dent line integral convolution. Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques -
SIGGRAPH ’95 (1995), 249–256. 2

[SSK∗15] SUNDÉN E., STENETEG P., KOTTRAVEL S., JÖNS-
SON D., ENGLUND R., FALK M., ROPINSKI T.: Inviwo - An
Extensible, Multi-Purpose Visualization Framework. Poster at
IEEE Vis, 2015. 5

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T.:
A simple and flexible volume rendering framework for graphics-
hardware-based raycasting. Fourth International Workshop on
Volume Graphics, 2005. (2005), 187–241. 2

[SSKLK13] SHREINER D., SELLERS G., KESSENICH J.,
LICEA-KANE B.: OpenGL programming guide: The Official
guide to learning OpenGL, version 4.3. Addison-Wesley, 2013.
3

[vW03] VAN WIJK J.: Image based flow visualization for curved
surfaces. IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control (2003), 123–130. 2

[Zha14] ZHANG N.: Memory-hazard-aware k-buffer algorithm
for order-independent transparency rendering. IEEE transactions
on visualization and computer graphics 20, 2 (feb 2014), 238–48.
2

submitted to SIGRAD (2016)


