
Texture Synthesis using Image Quilting

TSBK03 - Teknik för Avancerade Datorspel
Torsten Gustafsson 1

December 28, 2016

1Torsten Gustafsson, Media Technology student at Linköping University,
torgu529@student.liu.se



Chapter 1

Summary

This report aims to present a texture synthesis application made in C++, using
the graphics library OpenGL. Texture synthesis is the method of generating large
textures based on smaller, patterned textures. The texture synthesis method used
here is a method called ’Image Quilting’.

1



Chapter 2

Introduction

2.1 Theory

Texture synthesis have been an area or research in computer graphics for many
years [1]. According to [3], texture synthesis methods can be roughly separated
into three distinct classes. The first one is using a set of parameters to describe a
variety of textures to be generated. The downside of such a parametric represen-
tation is that it requires very good input textures (clearly repeating patterns) to
match its parameters with, and is therefore not able to synthesize all patterns in
a good way. The ones it will work for though, will generally look very good since
those methods generalizes the pattern to such an extent.

The second class is to generate a texture without predefined parameters. In-
stead it bases the synthesis on pieces of the input texture (e.g. pixel neighbor-
hoods). This differs from a parametrized method in that instead of trying to find a
general pattern that can be described for the whole image, it focuses on properties
of the actual image, and generates a texture based on those. The common factor
of these techniques is that they generate the texture one pixel at a time.

The Third class of techniques described [3] is based on patches to generate
textures. An area of the input texture is copied an placed on the output image,
based on a set of matching criteria. The method used in the application described
in this report is based on this class of methods.

2.2 Previous Work

There have been numerous methods presented in the field of texture synthesis.
Determining if a method yields ’good’ results is often a difficult thing, since the

2



CHAPTER 2. INTRODUCTION 3

definition of a ’good’ texture is difficult to formalize. Li-Yi Wei and Marc Levoy [2]
presented a method using tree-structured vector quantization. Based on the pixel
neighborhoods of each pixel to be generated they managed to generate textures
of arbitrary sizes, which often matched the input pattern. The trick here was to
match the size of the matching neighborhood to the size of the actual pattern in
the texture. This required some expert knowledge in both the algorithm and the
texture to be synthesized for each use, but the results were often good.

Alexeis A. Efros, William T. Freeman [1] presented another method, based on
image patches. By taking square patches from the input texture and placing them
on the output texture, after matching each patch with its neighboring patches
they managed to get relatively good results with good performance. This method
also required the knowledge of the pattern size beforehand to match the patch size
with the size of the pattern in order to get good textures. This method is called
”Image Quilting” and is also the method used by the application described here.

A third interesting method is based on graph cuts and was presented by [3].
This method uses the separating lines of distinct objects in the input texture to
cut out its patches, which are then used to synthesize new textures. this method
succeeds very well in generating new textures without visible seams. This method
is not directly applicable in the context of this report, but shows some of the
possibilities of texture synthesis.



Chapter 3

Method

The application was developed in C++, using Ingemar Ragnemalms common
library for OpenGL. The library allowed for easy use of Frame Buffer Objects
(hereafter referred to as ’FBO’) which was used extensively for generating the
textures.

The method used is called Image Quilting, which is based on taking small
”patches” from the input texture and aligning them on the output texture, based
on matching of each patch’s neighbors. Figure 3.1 shows how the method fills an
output texture using patches.

Figure 3.1: The image quilting method generates an output image by placing
patches in a chessboard-like pattern. Patches overlap to hide any visible seams
between them.

The patches must be several times smaller than the input texture for the
method to generate a varying result pattern. Each patch is matched with its
neighbors to determine if it is a good fit. The way the matching was implemented
in this application was by adding a completely random first patch in the lower left
corner, which was then used to test against for the next patch, and so on. Figure

4



CHAPTER 3. METHOD 5

3.2 shows the order in which the patches was placed. This way of taking purely
random patches may give rise to some problems, which will be discussed later.

Figure 3.2: The order patches was added in this specific application.

By placing patches in this order, each new patch had to be tested against its
lower neighbor, as well as its left neighbor (patches at the far left or at the bottom
only had one of those neighbors, and was thus only tested against that one).

For every new patch to place, several temporary patches was generated ran-
domly. Each of those temporary patches was matched with its neighbors, one at
a time, using a matching function called ”Minimum Error Boundary Cut”. This
matching function is based on checking the distance, for each pixel, in color value,
in the overlapping area of the two patches. This matching function was imple-
mented in a shader that took the two textures (patches) as input, and extracted
the pixel values of the two areas that was overlapping.

Patches was placed using several shaders. Since patches needed to be matched
against each other, the texture coordinates for the relevant matching areas had to
be known. To solve that problem the patches was placed in an FBO with known
width and height, and then sent in, two at a time to the matching shader. When
a new patch was considered a better match than the previous best result, it was
placed in an FBO with the correct output texture coordinates, and then added
to the result image. The adding of textures was achieved using a simple combine
shader. The result texture was worked through in that way, one patch at a time,
until every patch position had been filled.

To make a smooth overlap between the patches, some overlap regions needed
to be defined, as shown in figure 3.4a. Figure 3.4b shows these regions when
they overlap with other patches. Here it can be seen that the edge cases need
to be handled separately, since that area will otherwise be considered in two of
the side cases. A linear interpolation from the start to the end of the overlap
region was performed on each side of the patch, giving the appearance of figure
3.4a. Figure 3.4b shows the result of the overlapping of multiple patches, using



CHAPTER 3. METHOD 6

(a) Overlapping re-
gion is shown in red.

(b) Overlapping re-
gions are additive.

Figure 3.3: Here the patches overlapping regions are shown in red. When multiple
patches overlap, the overlapping areas must be blended in a satisfying way.

this interpolation.

(a) A linear interpo-
lation is added to the
overlapping regions.

(b) Color value adds
up evenly on overlap-
ping areas.

Figure 3.4: A linear interpolation of the color value is added in the overlapping
regions for each patch, as shown in (a).



Chapter 4

Results

This method have several important parameters to tweak in order to generate
good textures based on an input texture. The input texture itself must also fill
certain criteria for the method to be able to generate good textures from it. The
first and foremost of them is that it must be some kind of repeating pattern. If
it does not contain a clear pattern, the generation will not be able to find good
matches for neighboring patches, and thus making visible seams in the output
texture, which is obviously not what we want.

The method yields best results when the size of each patch is similar in size to
the actual pattern in the texture. This is difficult for the program to recognize on
its own, so the user will have to set a fitting value beforehand.

Since the implementation generated a fixed number of patches to choose from,
for each new patch to place, the number of these generated patches played a big
part in how good the output texture looked. With more patches, the final result
was more likely to look good, but it also increased computation time. Figure 4.1
shows the computation times for different values of this number.

Figure 4.1: The performance difference when increasing the number of patches to
test.

Since the RGB color space is not intended for calculating distances in color val-

7



CHAPTER 4. RESULTS 8

ues, an experiment using CIELAB was performed instead, which yielded marginally
better results, as shown in figure 4.2.

(a) RGB color space
matching.

(b) CIELAB color
space matching

Figure 4.2: Difference of RGB- and CIELAB color space matching. Both images
was generated using the same input image. CIELAB is better at hiding the seams
between patches, which are clearly visible in the RGB image.



Chapter 5

Evaluation and Conclusion

The application works quite well in accordance to the method used. It has some
problems removing the visible seams, especially when the pattern contains many
distinct colors. This can in some cases be fixed by increasing the number of test
patches, but not always.

Since patches are taken purely randomly, there might be problems, say for
example if the first patch (which is taken completely random) is taken from the
edge of the input texture, and the pattern is not clearly repeating anywhere, based
from that area, the method will not be able to find a good matching new patch,
no matter how many areas are tested. This could maybe be fixed by having the
first patch taken from somewhere in the middle of the texture, so new patches can
be extended in all directions, but the problem would reappear whenever a patch
is taken in the edge, which is most likely inevitable.

The method can probably be refined somewhat, but to generate really good
textures, another method will most likely have to be used, as most of the problems
comes from the method itself. A similar method, that uses individual pixels instead
of patches, with a bigger neighbor area is described in [2]. In this method, the
extracted pixel is compared to a number of its neighbors from the input texture,
to match with its placement in the output texture. This method will probably be
able to generate better results than the one used here, as it is more restrictive on
individual pixels, and will thus probably not have the clear seams that may appear
in the method used here, but it will most likely also be considerably slower, as
each output pixel have to be tested against every input pixel.

The Graph Cut method described in the ”Previous Work” section is using the
concept of patches, like the method used here. What makes that method better
is that it does not always take square patches of the same size, but instead finds
the relevant edges in the input texture to use as boundaries for its patches. This
will most likely generate very good looking textures, as the seams will be found
explicitly by the algorithm, instead of picking a bunch of random patches to test

9



CHAPTER 5. EVALUATION AND CONCLUSION 10

against, hoping to find a good match. Because the actual pattern may not always
be strictly horizontal or vertical, this approach is more robust.

So in conclusion, the method used works somewhat good, but to solve the
problems it inherently has, another, better method should be considered instead.



Chapter 6

Appendix

Some result images a presented here. Left is input texture and right is the resulting
output texture.

11



Bibliography

[1] Alexeis A. Efros, William T. Freeman (2001) Image Quilting for Texture Syn-
thesis and Transfer, SIGGRAPH ’01 Proceedings of the 28th annual conference
on Computer graphics and interactive techniques

[2] Li-Yi Wei, Marc Levoy (2000) Fast texture synthesis using tree-structured vec-
tor quantization, SIGGRAPH ’00 Proceedings of the 27th annual conference
on Computer graphics and interactive techniques

[3] Vivek Kwatra, Arno Schödl, Ifran Essa, Greg Turk, Aaron Bobick (2003)
Graphcut Textures: Image and Video Synthesis Using Graph Cuts, SIG-
GRAPH ’03 ACM SIGGRAPH 2003 Papers

12


